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The structure of a shock wave in a vibrationally relaxing gas undergoing re- 
flexion from a plane wall is examined, The shock wave is assumed to be weak, and 
departures from thermodynamic equilibrium are assumed small; both an adia- 
batic and an isothermal wall are considered. The flow field is divided into three 
regions: a far-field region, an interaction region, and, for the isothermal-wall 
case, a thermal boundary layer. Different asymptotic expansions are determined 
for the various regions through the method of matched asymptotic expansions. 
In  the region far from the wall, a non-equilibrium Burgers equation governs the 
motion and the incident and the reflected shock wave structures. During re- 
flexion, a non-equilibrium wave equation applies; its first-order terms are 
equivalent to an acoustic approximation. Heat conduction to the wall is modelled 
by an isothermal wall boundary condition which requires the introduction of a 
thermal boundary layer adjacent to the wall. This thermal boundary layer is 
thin and the adiabatic-wall result provides the outer solution for treating this 
layer. This thermal layer affects the structure of the reflected wave. 

~~ 

1. Introduction 
The thermodynamic equilibrium that normally exists between the various 

forms of energy of gas molecules may be temporarily destroyed by the sudden 
change of temperature that occurs when a gas is traversed by a shock wave. 
While translational and rotational degrees of freedom return to equilibrium 
after a few collisions, some of the internal degrees of freedom may require hun- 
dreds or thousands of collisions before they readjust to thermodynamic equili- 
brium. In many polyatomic molecules, energy is invested in the vibrational 
mode, even when the gas is processed by an acoustic wave or a weak shock. 
Determining the amount of energy invested in the vibrational mode is important 
in sound absorption, moderately high enthalpy internal and external flows, 
andin other situations (see e.g. Freeman 1958; Vincenti & Kruger 1965; Glassman 
1966; Becker 1970). An account of the basic physics of such processes, as well as 
their effect on basic gasdynamic flows, was given by Clarke & McChesney (1964). 

A shock wave heats the gas passing through it rapidly and homogeneously, 
and thus provides a useful experimental means of initiating non-equilibrium 
processes. However, the gas processed by a shock wave is set in motion, compli- 
cating experimental measurements. Allowing the shock wave to reflect from the 
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end wall of a shock tube results in a nearly quiescent gas, and provides some 
advantages in studying the non-equilibrium rates. Spence (1961) was the first to 
study analytically the unsteady flow field behind a reflected shock wave in a 
relaxing gas. He investigated the motion of a strong shock wave produced by 
a piston and pointed out that relaxation times could be measured by observing 
the shock path. Baganoff (1965) measured the end-wall pressure histories in 
shock-reflexion processes, and concluded that the end-wall pressure, which is 
easy to measure, is quite sensitive to the relaxation processes in the driven gas. 
The method of characteristics has been employed to calculate the reflected 
shock-wave flow field in the presence of relaxation; Johannesen, Bird & Zienkie- 
wicz (1967) combined the Rankine-Hugoniot, characteristic, and Rayleigh-line 
equations, and made calculations for vibrational relaxation in carbon dioxide. 
They found good agreement among computer results, Baganoff’s end-wall 
pressure histories and their own experimental results of density distribution 
behind the reflected shock. Presley & Hanson (1968) also employed the method 
of characteristics and carefully calculated the time-dependent reflected shock- 
wave flow field with chemical reaction. Later, Hanson (1971a,b) used this 
concept, employed the approximate large-time and small-time solutions for the 
end-wall pressure history to establish the timewise variations of the thermo- 
dynamic state of the gas adjacent to the wall, and used these results to study 
vibrational relaxation in carbon monoxide. Brandon (1969) calculated shock- 
wave reflexion with vibrational relaxation behind the incident shock wave and 
simultaneous chemical and vibrational relaxation behind the reflected shock wave. 

Goldsworthy (1959) determined the effect of end-wall heat transfer on the 
trajectory of a reflected shock wave; Clarke (1967) modified this result by allow- 
ing temperature jump at  the end wall. This effect was easily observed in the 
experiments of Sturtevant & Slachmuylders (1964) and Baganoff (1965), 
who compared their measurements with Goldsworthy’s theory. Later, Lesser 6t 
Seebass (1968) determined the effect of an isothermal mall boundary condition 
on the structure of a weak shock wave. 

Buggisch (1969) delineated the analytical solution for the case when the shock 
is weak but vibrational effects are strong relative to the shock strength; Bug- 
gisch (1970) considered the case of a relatively strong shock perturbed by weak 
vibrational effects. He did not consider the effect of heat transfer t o  the end wall. 
The theory we present here considers the case of a weak shock when the effects 
of vibrational relaxation are of thc same order as the shock strength. We also 
include the important effect of heat transfer to the end wall. 

In this paper we assume t,hat the shock wave is weak, but that it is still able 
to excite the gas vibrationally, that the state is one of small departure from 
thermodynamic equilibrium, and therefore thab a simple rate model is appro- 
priate. The shock wave is assumed fully formed long before reflexion occurs, 
so that it is steady with respect to shock-fixed co-ordinates, and its structure can 
be calculated from the governing equations. Such a steady solution provides the 
initial conditions for the wall-reflexion problem. 

The linear theory of wave propagation in a relaxing gas concludes that at  large 
times the shock structure will be diffusive in character, centred on the equilibrium 
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characteristic, and will occupy a region whose width grows parabolically with 
time or with distance from the origin. This is not the asymptotic behaviour that 
would be expected physically for the far-field steady shock wave. Blythe (1969) 
and Ockendon & Spence (1969) developed the appropriate nonlinear theory, 
and showed that a generalization of the Burgers equation to the case of a re- 
laxing gas applies. Analogous to the Burgers equation, this ' non-equilibrium 
Burgers equation ' applies only to waves moving in one direction. 

In  the absence of heat conduction, reflexion from a plane wall is analogous to 
two shock waves of opposite families interacting with each other. Consequently, 
to treat the reflexion process, we need an equation which takes account of wave 
motion in two directions; such an equation is derived here. The first-order solu- 
tion implies an acoustic approximation. When heat conduction to the end wdl 
is significant (as it usually is after some time), a thin thermal layer arises and 
must be treated separately. The method of matched asymptotic expansions is 
used to provide solutions in adjacent domains. For an adiabatic wall, the ex- 
pansion is carried out in a parameter that is a measure of the shock strength. 
For an isothermal wall there is an additional parameter related to the heat 
diffusivity of the gas. For many shock-tube experiments, wall heat conduction 
is sufficient to ensure a nearly isothermal wall if the incoming shock is weak. 

There are two cases to consider, depending upon the magnitude of the Mach 
number Mf0 based on the frozen sound speed. For M,, < I, the incoming shock 
wave is fully dispersed; for M,, > 1, the incoming shock wave is partly dispersed. 

The methods used here are analogous to those used by Lesser & Seebass 
(1968) in their study of the structure of a weak shock wave undergoing re- 
flexion from a wall. I n  $ 2  we formulate the problem and determine the incoming 
shock structure; in $ 3 we determine the solution for reflexion from an adiabatic 
wall. I n  $ 4  we make the necessary modifications for an isothermal wall. 
A numerical method is employed to determine the effect of the velocity induced 
by the thermal layer on the reflected-shock trajectory and flow structure. In  
8 5 we discuss our results. 

2. Formulation and incoming shock structure 
As indicated in figure 1, we consider a shock wave whose amplitude is 

measured by the speed u* of the gas behind the shock propagating from the left 
in a semi-infinite uniform fluid initially at  rest with pressure p:, density p:, 
translational and rotational temperature T:, internal temperature Ti*, and the 
corresponding frozen and equilibrium sound speeds, a f ,  and aeO, respectively. 
The undisturbed fluid is assumed to be in equilibrium state; that is, 

T: = TF and u* = 0. 

The shock strength as measured by u*/afo is assumed weak ("*/af, = E < I); 
far from the wall, the incident shock wave has a steady-state structure, 
which propagates a t  a constant shock speed U z .  Long after refiexion, the 
structure of the reflected shock wave will once again approach a steady state 
determined by the incident shock strength and the equilibrium thermodynamic 
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FIGURE 1. Sketch of shock tube and co-ordinate systems. 

state of the quiescent gas between the shock wave and the wall. The wall is 
located at  x* = 0, with the gas occupying the region x* < 0. 

A zero-velocity condition at  the wall is a necessary, but not a sufficient, 
condition for a unique solution to the problem; we must also specify the properties 
of the end wall. We neglect wall accommodation effects, and consider the wall 
to be either adiabatic or isothermal. For an adiabatic or insulated wall, there is 
no thermal layer adjacent to the wall, and the inner solution automatically 
satisfies the adiabatic wall condition. In  practice the shock-tube end wall is a 
good conductor, and heat conduction to the wall must be considered; we make 
the approximation that the end wall is isothermal. End-wall heat conduction 
creates a very thin thermal layer that takes heat from the adjacent hotter gas 
and effectively attenuates the strength of the reflected shock wave. Because the 
thermal layer is thin, the adiabatic-wall problem is treated first, and is considered 
as the outer solution for treating the isothermal-wall problem. The contribution 
t o  the heat flux due to the internal temperature is taken to be small, t o  simplify 
the analysis. (For the weak shocks considered here, this imposes a restriction 
on the allowable difference between the frozen and equilibrium values of the 
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ratio ofspecific heats.) Thus, an adiabatic wall temperature implies TZ,(O, t*) = 0, 
and anisothermal wallrequires T*(O, t*) = constant. 

We consider a gas in which the internal energy per unit mass e is character- 
ized by the translational and rotational temperature T*, and the internal tem- 
perature T f  , by means of 

Here cvf and ci are the specific heats of frozen and relaxing modes; they are 
assumed constant in the temperature range under consideration. We assume 
that T* still satisfies the perfect-gas law p* = p*RT*, and that the approach of 
the internal temperature Ti* to the equilibrium value T* is described by the 
linearized rate equation 

e = cVfT*+ciTT. (2.1) 

DTZ T*-T: 
Dt* 7 ’  
-- -- 

in which T is the ‘relaxation time’ and D/Dt* is the substantial derivative. 
In  general, T is a function? of T*, p* and Ti*. Because the disturbance is weak and 
the departure from equilibrium is small, r may be treated as a constant without 
affecting any first- or second-order results. 

In  addition to (2.1) and (2.2), the equationsgoverningunsteady one-dimensiona 
flow of a relaxing gas are the conservation of mass, momentum, and energy, 
and the thermodynamic equation of state. These equations are the same as 
those for an equilibrium gas. The elimination of e, T*, Ti* from the governing 
equations (except for the heat conduction terms) leads to 

in which T* = T ( Y e -  l)/(Yf-- I), 7.f = 1 +R/cvp 

ye  = 1 +RIG,, = 1 + R/(cV,+ ci), 

and where p, is the equilibrium value of the viscosity, ,uvo that of the bulk vis- 
cosity and k, that of the thermal conductivity; all three of these quantities are 
taken to be constant throughout the flow field, as their variations cause effects 
of higher order than those considered. We retain the viscosity and heat conduction 
for the moment; in the absence of end-wall heat conduction, they are of higher 
order, and an inviscid theory is appropriate. The coefficient (yf- ye) on the right- 
hand side of (2.3) determines a new parameter that measures the small departure 
from equilibrium. Equation (2.3) proves convenient for our problem. Using 
this equation, along with conservation of mass and momentum and the equation 
of state, we are able to avoid dealing with the non-equilibrium variable TT, 
which can be determined from (2.2) if u* and T* are known. Hereafter we con- 
centrate on determining the fluid properties u*, p*,  p* and T*. 

t Gum’s (1946) representation for T is 

7-1 = Ap*T*-lexp [-BT*-4] [l-exp (-OT*-l)], 

where A and B are constants and 0 is the characteristic temperature of vibration. 
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To determine the small perturbation equations for the iiicoming shock 
wave, it is convenient to  replace the physical co-ordinates (5". t*)  by the non- 
dimensional independent variables <, t, 

- et" 
(""-afot"), t = - 1 

E=* r* ' 

and define non-dimensional small-perturbation variables ii, j5, p, by 

u* = afosZ, p* =p:(l+yfEp), 

p" = p:(l +@), T* = Tz(1 +cT). 

The dependent variables have asymptotic expansions of the form 

jj = u(1) + EU(2) + I . . ; 
substituting these expansions into the governing equations, and retaining only 
the first-order terms in the three small parameters defined after (2.4), we find - 
jj(U = p(1) = T(l)/(y,- 1) = $1) and 

where K = S/e = ( y f  - ye)/2e is the ratio of departure from equilibrium to the 
shock strength and 

Here 

is the Reynolds number based on the relaxation length sca'le afo7* and 

A, = ( 1  + ( Y f  - ~ ) / P r ) / ~ ~ u r o T * . * .  

Ruro.* = Po afo7 / ( 3 P 0 + P V O )  
* 2  "4- 

Pr = (4Po/3 +Pvo) Y f  CvJko 

is the Prandtl number. The quantity RuroT. is a measure of the number of col- 
lisions required for the gas to return to thermodynamic equilibrium, typically 
104 or larger (the quantity Pr is typically about f). 

Equation (2.4) contains three small parameters: E ,  R&* and 6 = (yf- y,)/2y,, 
related to the shock strength, the ratio of viscous to  inertia forces, and the 
departure from equilibrium. If we retain cumulative second-order terms, such 
as ey,jP)iiP)) viscous effects, and approximate ( y f  - ye)/2yf as (aro - aeo)/afo and 
yfct,f as yc cue, then (2.4) becomes (in dimensional co-ordinates) 

which is analogous to Burgers' equation for equilibrium flows; therefore we call 
it the ' non-equilibrium Burgers equation '. The inviscid version of this equation 
was first derived by Blythe (1969). Later, (2.4) ~ 7 a s  derived by Ockendon & 
Spence (1969). Equation (2.4) is important for the study of unsteady non- 
equilibrium shock-wave structure. 
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Our interest is in the effect of vibrational rekxation on the shock-wave 
reflexion process; we simplify the problem by assuming that viscous and heat- 
conduction effects are negligible outside the wall thermal layer: 

Here K is the parameter whose magnitude determines whether the shock wave 
is fully or partly dispersed. When K is large, relaxation effects are strong and 
the convective steepening is balanced by relaxational diffusion and the shock 
wave will have a continuous structure. On the other hand, when K is small, 
relaxation effects are weak and compressions will steepen to become discontinu- 
ities with vibrational effects limited to the flow behind the shock. 

Although the general analytic solution to (2.5) for arbitrary initial conditions 
is not readily found, (2.5) possesses a self-preserving solution and the steady-state 
structure can be deduced by introducing a single co-ordinate y = E-Pf ,  where 
the perturbations are functions of y alone; that is G1) = iP(y) ,  etc., with the boun- 
dary conditions id1) = 0 or 1 and du(l)/dy = 0 as y-f f co. The steady-state wave 
speed lJz is equal to afo( 1 + eP),  where P is determined by boundary conditions. 
By writing ( 2 . 5 )  in terms of this shock co-ordinate, y, integrating twice and 
applying the boundary conditions, one deduces that 
P =  ( ~ f - 1 ) / 4 - ~  or MfO = l Jo /a fo  * = 1+(rf+1)U~/4afo-(yf-y,)/2yf, 

where illfo is the frozen Mach number. 
The steady-state solutions divide into two different cases, depending upon 

the magnitude of the ratio of departure from equilibrium to the shock strength 
K or upon the frozen Mach number Hf0. ForMfo < 1 or K > $(yf+ I), the solution 
may be written as @) = f,(y), where f,(y) satisfies 

-- I - f l -  c1 exp (1) 
fla1 2 ( I - A )  ' 

with A = 2/3/(y,+ 1),  a1 = - A ( l  - A )  > 0, and c, an arbitrary constant related 
to shock-wave position. For convenience, set f l  = 4 a t  y = 0;  then c1 = (&)&I.  

This structure, described by Broer (1951) and Lighthill (1956), is a 'fully dis- 
persed shock wave ', and propagates at a speed intermediate between the frozen 
and equilibrium sound speeds. The velocity increases continuously from its 
initial rest equilibrium state t o  the final perturbation equilibrium state. For 
Illfo > I or K < t ( y f  + l ) ,  the velocity profile given by (2.6) does not represent 
a continuous function; rather, it is necessary to insert a Rankine-Hugoniot 
shock a t  the wave front. The proper representation may be written as G(l) = 0 
for y > 0,  and U(l)  = f2(y) for y < 0,  where f2(y) is defined by 

(I  - f 2 ) f $ ,  = c2 exp - 
(2(1YA))  , 

with a2 = A / (  1 - A )  > 0,  and c2 determined from the Rankine-Hugoniot 
conditions with the vibrational mode frozen through the shock front. In  our 
notation, the velocity jumps from the value 

f, = (yf+ 1) (M,2,- 1)/2eMf0 a t  y = 0 and c2 = (1 - f , )  f z z .  

= 0 to f , ,  where 
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FIGURE 2. The steady-state velocity profile of fully dispersed shock waves, 
varying K = (yf - ye)/2eyf. (Curves labelled with values of K . )  

This partly dispersed shock wave propagates at a speed greater than the 
frozen sound speed. The wave consists of a Rankine-Hugoniot shock followed 
by a gradual further compression which extends over the 'relaxation zone'. 
Thus, we have assumed that the translational and rotational modes adjust to 
new equilibrium values instantaneously across the Rankine-Hugoniot shock, 
and that the vibrational energy is frozen during this stage. In  the relaxation 
region, the vibrational temperature adjusts gradually to its equilibrium value, 
while the translational and rotational modes remain in local equilibrium. 

The remaining independent variables i ~ ( l ) ,  jP) and are related by 

7 1 )  - -(I) = If(l,/(y - 1) P - P  f 

and equal tofl(y) if Mf, < 1, or equal tofi(y), if Mf,  > 1. Substitution into the 
rate equation (2.2) determines T? : Ti" = Tz (1 + eTL1)), where 

For M,, < 1 there is a gradual increase of temperature and vibrational energy 
through the whole wave, and for Mfo > 1, following the Rankine-Hugoniot 
jump, there also is a gradual increase of temperature in the relaxation zone. This 
is quite different from the strong shock wave case, where the temperature de- 
creases behind the Rankine-Hugoniot shock wave as the vibrational mode 
becomes excited. For intermediate shock strengths the behaviour is more com- 
plex (see Bethe & Teller 1941). Becker (1970) has sketched the velocity and 
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FIGURE 3. The steady-state velocity profile of partly dispersed shock waves, 

varying K = ( y f  -ye)/2eyf ( E  = 0.01). (Curves labelled with values of K . )  

temperature profiles for increasing shock strengths for two different values of 

Figures 2 and 3 display the steady-state solutions of fully and partly dispersed 
shock waves, for moderate K ’ S .  There are three limiting cases. For K very large, 
the relaxation zone becomes very long, and the velocity profde is almost constant 
over the relaxation length scale af,r*. For K very small, 

YAY,. 

and the velocity profile is represented by a step function that has the same jump 
as an equilibrium shock wave followed by a ‘vibrational tail’. For K -+f(yf + l ) ,  
the frozen Mach number M,, -+ 1 and the velocity profile is approximately zero 
for y > 0 and 

;ill)= [1-(1-2A)exp(&y/(l-A)] for y < 0, 

which is a simple exponential behaviour. The behaviour depicted in figures 2 and 
3 is most easily interpreted by considering conditions intermediate to these 
limiting cases. 

3. Shock reflexion from an adiabatic wall 
As a fully dispersed shock wave nears the wall it  begins to interact with the 

wall. For a partly dispersed wave, which propagates slightly faster than the 
undisturbed frozen sound speed, there is no interaction with the wall until it 
reaches the wall. After reflecting from the end wall, the waves propagate through 
a time-varying relaxation zone which is a part of the incident wave. From the 
far-field solution we know that the thickness of the relaxation region is O(af,r*) 
and that the shock speed is near afo;  therefore, the interaction of incident and 
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reflected waves occurs on a characteristic time scale of order r*. Hence, the 
interaction inner region is delineated by x* = O(asor*) and t* = O(r*). In this 
short time and spatial interval, it is reasonable to anticipate that convection 
terms, which vanish a t  the wall, are of higher order, and that to lowest order the 
phenomenon of shock-wavereflexion is governed by a linear equation. To observe 
the details of reflexion, we introduce dimensionless independent vmiables 

., T* 

and define the non-dimensional perturbed dependent variables, as in the far- 
field region, to be u, p ,  p and T.  Again we expand the dependent variables 
in a power series in e, and then find that the first-order approxima,tion for the 
velocity satisfies 

The other first-order quantities, such as temperature, pressure and density, 
also satisfy this equation. If the term (yf- ye)u$)/ys, which is 0(6),  is retained 
in the derivation, (3.1) can be rewritten in dimensional co-ordinates (x*, t*) as 

which is usually derived on the basis of the acoustic approximation and is appro- 
priate for the case (ufo-ae,)/aso = O(1). Equation (3.2) has been employed 
by many authors to study the lion-equilibrium problems, and the character 
of the solution is well known. At times small compared with r*, the higher-order 
operator associated with frozen speed controls the propagation of disturbances; 
but, a t  large times, it is the equilibrium sound speed which governs the motion. 
Equation (3.1) is simpler; there is only one speed controlling the motion since 
the equilibrium speed is approximated by the frozen sound speed. 

The boundary condition for shock-wave reflexion is zero velocity a t  the wall. 
The initial conditions are imposed by requiring the solution to approach the 
incoming steady-state solution as t -+ - 00. We first examine the fully dispersed 
wave, then proceed by analogy with the partly dispersed case. 

3.1. Fully dispersed shock wave 
I f  hfs0 < 1, the structure of the wave is everywhere differentiable any number 
of times. As an initial condition we require that u(x, t ;  e) approach the far-field 
solution written in inner co-ordinates (x, t ) ;  i.e. as t + - 00, u(x,  t )  + f l ( x  - t - @t), 
where the function fi is defined by (2.6). With e --f 0, we find that, as x, t +- 03, 

U ( ~ ) ( X ,  t )  -+ f , (x- t )  provides the matching condition for the first-order solution. 
To solve (3,1), we split the equation into 

such that both equations have simple general solutions. The only solution for 
the second equation that has P(x,  t )  bounded for t + - co is F(x ,  t )  = 0, and the 
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fist equation reduces to the wave equation. Applying the boundary condition 
and matching witch the far-field solution, we find u(l)(x, t )  = f i (x ,  t )  - f l (x-  t ) .  The 
remaining first-order approximate variables are 

= p (1) - - W/(yf- l )  = f l (x - t )+f l ( -x - t ) .  

This shows that the first-order asymptotic solution in this region is only a super- 
position of left- and right-going waves of equal strength, in which the gas velo- 
cities cancel at  the wall, and other thermodynamic properties, such as pressure, 
density and temperature, are additive there. This is classical acoustic reflexion. 

To investigate the convective and dispersive effects in this inner region, we 
must use the second-order approximation. The equations governing the second- 
order terms are found by substituting the asymptotic power series into the 
governing equations, and using the first-order results. Thus, we find the second- 
order equations 

(3.3) 1 u )m 
pt 12) +ug’ = - ( p m  (1) 

up’ +pg) = - (p(Uu21) 

yrp!2’ - p‘2) - T(2) = p(qYD, 

and 

1 +T (up - Ug)) = 1 + - [p(1)2@ + ZL(l)U$i - (d1)py  + 7 / f p u p ) z ]  - 2 K z c g .  (3.4) ( 3 ( 3 
Equation (3.4) is a non-homogeneous wave equation, analogous to a non-homo- 
geneous classical wave equation for the second-order approximation in gas- 
dynamics. With d 2 ) ( x ,  t )  determined by (3.4), the relations (3.3) prescribe the 
second-order density, pressure and temperature. Equations (3.3) and (3.4) 
are valid ahead of, and behind, the discontinuity for the case of a partly dispersed 
shock wave. A judicious interpretation of the expansion u(l) + e d 2 )  is necessary 
to get the correct speed for the discontinuity. 

Variations in the relaxation time T* do not affect the result to this order. For, if 
we write r* = T:( 1 + efil)), the effect of the term &) is second order, and appears 
in the right-hand side of (3.4) as r(l)(ui$) - u L ~ ) ~ ,  which is zero. 

It is convenient to write (3.4) in terms of characteristic co-ordinates 6 = x -  t 
and 7 = x + t ,  which we shall use interchangeably with (x ,  t )  in the interaction 
region; they should not be confused with the ( 6 ,  E )  or (7, i )  co-ordinate systems in 
the far-field regions. Substituting for dl), p(l), p(l), we find 

z p  + u(2) = P(2)(x, t ) ,  

+[-(1+rf)f;(-r)f1(-r)+2~f;(-7r)+(3-yf)f;(-7)f1(~)lll 

+ [ ( ~ f +  1)f;fWIE) + (yp+ 1K2(E) - 13 -yf)Yi(E)fl( -7116 

+ [(yf+ l)fl( -v)f1( -7)  + ( ~ p +  1 ) f 3  -7)  - ( 3 - 7 . X (  -7)fl(E)lq 

+ (3 -7Q [fi(tJfA - 7) -f;( -7)f1(6)1& 

(3.51 

4 F g  = [-  (1  + r f ) f ; ( 6 ) f l ( 5 ) + 2 ~ f ; ( 6 ) + ( 3 - y f ) f ; ( ~ ) f l ( - r l ) l ~  

(3.6) 

where the prime denotes differentiation with respect t o  the function’s argument. 
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The boundary conditions required for the zero-velocity wall condition are 
that ~ ( ~ ’ ( 0 ,  t )  = 0, and so ui”(0, t )  = 0; this implies F@)(O,t) = 0 for (3.6). Initial 
conditions are supplied by the asymptotic matching principle of Van Dyke 
(1964): match the one-term far-field with the two-term inner expansion; that 
is, the two-term inner co-ordinate representation of the two-term outer far-field 
solution is set equal to the one-term far-field co-ordinate representation of the 
two-term inner solution. Thus, we find that, as t -+ - 00 with x - t fixed, 

U(”(X,t) +-ptf;(x-t); 

so ~(”‘(~77)-+-Prtfl(5)-tf‘;(E)+f;(~)l. 
Integrating (3.6) twice, and satisfying the above matching condition, we find 
F@)(x, t )  ; solving the first-order non-homogeneous linear partial differential 
equation (3.5) with the initial condition is then a straightforward, albeit lengthy, 
task. The final result for the second-order velocity is found to be 

PtBt(fl(. - t )  -f;( - x - t ) )  u(2) = - 

-- - yf (f;(x - t )  Q1( - x - t )  -fi( -x - t )  Q1(x - t ) ) ,  
4 

where @1(5) = 2(1--A)[(1-al)fl(~)+log(1-fl(&))l. 

Substituting the second-order velocity u@) into the first two equations of (3.3), 
and integrating with respect to x and t ,  respectively, we find that 

PCZ) = - P G ( S )  +fi(-T)) -P(fAt) +ti( -7)) + f W  +ff ( -T)  

With the second-order solutions for density and pressure known, the temperature 
T(2) can be evaluated by using the third equation of (3.3). We note that, as t -+ - 00 

with x - t fixed, the combination of first- and second-order solutions for pressure, 
written in the far-field representation, is p(l) + qd2)  -+ fl( S) - PVl( 5) + $f1( g), 
which matches the first-order far-field solutions except for the second-order term 
$f1($). This occurs for density and temperature as well, and may be remedied 
by carrying out the second-order far-field expansion. As we need u only to 
second order, this is not undertaken here. 

3.2. Partly dispersed shock wave 

For a partly dispersed shock wave there is no interaction with the wall until 
the wave front reaches it. After reflexion from the wall, the discontinuous jump 
propagates through the relaxation zone that has followed it to the wall. The 
velocity profile f2, given by (2.7), is complicated, and it is impossible to find an 
analytical relation predicting the precise strength of the reflected Rankine- 
Hugoniot shock at any instant t. As (3.1) and (3.4) both possess two constant- 
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speed wave operators (with different signs), it  is reasonable for us to expect 
that the reflected shock front propagates through the relaxation zone at  con- 
stant speed. We proceed with this approximation (as did Hanson 1971a), which 
is clearly justified in a first-order approximation, and avoids:the difficulty of 
finding the jump condition at  any instant. While the procedure is not locally 
correct to second order, it does give the correct asymptotic speed for the dis- 
continuity with the proper interpretation of u(l)+d2). As we need this result, 
we report it noting that it is only correct to first order locally. We generalize 
the definition of the function f2(y) as follows. For y > 0, fz = 0, and for y 6 0, 
fz(g) satisfies the relation (2.7); hence the far-field, incident, partly dispersed 
shock wave is given by D ( y )  = fz(y) for - co c y < co. By considering the left 
and right derivatives for f2 as y -+ 0, we may treat f2(y) as a single-valued func- 
tion that is everywhere thrice differentiable. Hence, the calculation for the 
reflexion of a partly dispersed shock wave, which involves third derivatives, is 
essentially the same as that for a fully dispersed shock, except that we insert 
the Rankine-Hugoniot relations for the shock-front jump conditions. 

Following the procedure employed to solve the fully dispersed case, we find 
the first- and second-order velocity to be 

where @, = 2(1-A)[(1+az)fz(~)+log(l. - - f 2 ( 0 ) 1 .  

Similar expressions for density, pressure and temperature can also be found. 
For t < 0 (i.e. 7 < 0) ,  the terms including functions of 7 are zero, and there 
is no contribution, so that there is no reflexionand no interaction. The Rankine- 
Hugoniot shock front reaches the end wall x: = 0 at  t = 0, and is then reflected 
from the wall, propagating through the time-varying relaxation zone behind 
the incident shock with a speed that is initially approximated by the frozen 
sound speed af0, and, as we shall see, approaches the speed afo( 1 - K + $( 5 - 3yf)) 
as it leaves the interaction region. 

This completes the interaction (inner) solutions for both the fully and partly 
dispersed waves. It is to be noted that, at  the end wall, the first-order solutions 
for temperature, pressure, and density are non-decreasing functions with respect 
to time t .  But their gradients withrespect to space, viz. Ti1), pL1), pi1’, all vanish at 
x = 0. Moreover, even the first derivatives with respect to x of the second-order 
solutions for these variables vanish at the wall. This implies that the temperature, 
pressure and density have extreme values at the wall. This is consistent with the 
adiabatic wall condition for a heat-conducting gas, which requires that 

Tg’(0,t) = TZ’(0,t) = 0. 

These inner solutions will not be valid for large times after reflexion; the 
solutions for the second-order approximations contain secular terms such as 
tf’(x - t ) ,  where f’ denotes f I for the fully dispersed shock wave and fi for the 
partly dispersed wave. Consequently, for t = O(s-l), the inner asymptotic 
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expansion for velocity becomes invalid. For t + - CQ, these solutions match with 
the incident far-field solution. To obtain a valid expansion for t --f + co, we need 
the left-going version of the far-field wave equation. Written in co-ordinates 
analogous to ( 2 . 5 )  

the first-order result is obviously 

with the auxiliary relation 
- - p(1) = pa)  = T(”/(y - 1) = 2 - @(7, f) 

f 

and with the boundary conditions ii -+ I as 91 --f - co and ii -+ 0 as 7 + + CQ. 

By analogy with our matching of the incident shock wave with the inter- 
action region solution, one can see that the first-order matching condition 
is equivaIent to the requirement that, as i?+ 0+, iJ1)(?j, f) -+ 1 - fl,2( -7) + O(s). 
If we compare the matching conditions above with the steady-state solution 
of (3.71, we can conclude that the appropriate solutions are 

It can easily be verified that the second-order interaction solution for velocity 
properly matches with this solution. However, as in the case of the incident 
wave, the second-order interaction solutions for temperature, pressure and 
density cannot be matched with the first-order outgoing solutions for those 
quantities without additional computations. 

To construct the uniformly valid composite expansion for velocity, we 
employ the additive-composition principle; the sum of the interaction and the 
far-field solution is corrected by subtracting the part they have in common. 
Thus the composite expansion for velocity of the fully dispersed shock is given 

for f < 0, 
and 

+ 3-yf (fi(5) @I( - 7)  -f;c -7) s,(t)j for f ’ 0. 4 

For the partly dispersed shock, we must determine the composite trajectory of 
the shock front. We write the composite trajectory, for i? < 0, as 

< - ( $ ( y f + l ) - ~ ) f =  0 and, for t >  0,  as q - ( & ( 5 - 3 y f ) + K ) C =  0. 
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Hence, the composite expansion for velocity of the partly dispersed shock is given 

by 

and 

The uniformly valid composite representations of the density, pressure, and 
temperature can be formed in the same way. 

4. The isothermal wall 
I n  $522 and 3 we assumed that the viscosity and heat conductivity were 

negligible. Thus the zero-velocity wall condition is a sufficient boundary con- 
dition, and the temperature gradient at  the wall T,(O, t )  is zero for both the first- 
and second-order solutions. This implies that the non-equilibrium wave equation 
which we derived and employed in $ 3 is unable to cope with an arbitrary tem- 
perature or heat-flux boundary condition. Here again, the problem is one of the 
singular-perturbation type and is solved by the introduction of a thermal 
boundary layer adjacent to the wall. We first calculate the thermal boundary 
layer ($4.1)) then determine its effect on the interaction region (94.2) and sub- 
sequently on the reflected shock trajectory ($4 .3 ) .  

4.1. The thermal boundary layer 

Heat conduction to the wall is of importance only in a layer near the wall that 
initially is very thin. As pointed out by Goldsworthy (1959)) the pressure in this 
thin thermal layer is independent of x*. Thus, after an appropriate stretching, 
the equations governing the first-order terms in a thermal-layer expansion 
will indicate the absence of a pressure gradient. 

The new small parameter for the thermal-layer expansion is 2 = l /R;foT*; 
from the previous assumption that eRafOT* 9 1, we have a realistic restraint that 
E % $2. The appropriate thermal-layer co-ordinates (2 ,  t )  are defined by the 
stretching 2 = xi2 and t" = t ,  where x, t  are dimensionless variables defined in 
$ 3 .  The thermal-layer dependent variables Q(2, t"; E h ) ,  @(2,  8; 2 ) .  . ., defined by ana- 
logy with $ 2 ,  are expanded in the form 

42 = $a(l)(~,t")+-2a(2)(2,t")+ ...) 
@ = py2 ,  t") + 2$(2)(2, t " )  + . . ., 

etc. The variations of fluid properties in the thermal-layer region are the same 
order of magnitude as those in the interaction region, but the velocity is of higher 
order here, being O(e.2); thus we again expect convection and dissipation to be 
negligible, and the governing equations to be linear. 
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Substitution of the thermal-layer expansions into the basic equations, ex- 
pressed in the stretched co-ordinates (2,t”), yields the set of first-order equations 

jy +q = 0, @p = 0, Yr@” = ffCU+P^‘”, (4.1) 

and 

Equations (4.1) and (4.2) are in a form suitable for the problem with an arbitrary 
wall-temperature condition; the adiabatic-wall solution automatically satisfies 
(4.1) and (4.2). 

We assume, for simplicity, that the wall is isothermal. This is a good 
approximation in many experimental situations. The variation of the end-wall 
temperature was less than 1 yo in the experiments of Sturtevant & Slachmuylders 
(1964). Thus @ ( O , f )  = 0 and @)(O, t” )  = 0. Other boundary conditions are 
provided by matching the solution for this region to that for the interaction 
region. We treat the fully and partly dispersed shock waves separately. 

4.1.1. Fully dispersed shock wave. The thermal-layer representation of the 
first-order adiabatic velocity as x -+ 0 is u(l) M 22jf;( -f)g. This provides the 
matching condition for the thermal-layer velocity. As 2 -+ - co, QJ1) -+ 22&( - f). 
Similarly, for other dependent variables, we find the matching conditions are, as 
D +- 00, @(l) = jY1) = ff(l)/(yf- 1) -+ 2f1( - t ” ) .  This follows from the second equa- 
tion of (4.1), which leads to a simple solution for pressure and gives the pressure 
history at the shock-tube end wall, and permits simplification of (4.2) to a ‘ non- 
equilibrium diffusion equation ’ 

1 
or Pp) - Pr - 9% + 2(yf- I)!;( - t”)  = c ( 2 )  e-t, (4.3) 

where c(D) is an arbitrary function. The right-hand side of (4.3) is the general 
solution for the operator (1 +a@). Satisfying the essential condition that the 
solution is bounded throughout -co < t” < coy we conclude that c(2)  = 0. Now 
(4.3) can be solved by taking the Fourier transform with respect to time. 

Satisfying the boundary and matching conditions, it  follows a t  once that the 
first-order solutions for temperature, density and velocity in the thermal bound- 
ary layer are given by 

(4.4) 
!w = 2(y,- l)fl( - t”)  + 01(9, P), 

~ p i )  = 2f1( - %) - el@, i), 

and 0,(1) = 22f!f;( - %) + 

- P r P  
n* -co (f-‘T)* exp (-> 4(t-T) dr . (4-5) 

B e 
where 81(B, t ” )  = (‘j- l)Pr*l fl( - T )  - 
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The first terms of (4.4) and (4.5) are the adiabatic solution in the thermal-layer 
region; the second terms represent the influence of heat conduction. Care must 
be exercised in determining &(I) for 2 -+ 0, because the denominator appefiring 
in the integrand of Olz approaches zero as r --f f. 

4.1.2. Partly dispersed shock wave. In this case, we are interested only in t" > 0; 
for f < 0, the gas temperature at  the wall is constant and equal to Tt. At f = 0, 
the incident shock front meets and then reflects from the end wall and all the 
thermodynamic properties such as temperature, pressure and density jump to 
values determined by Rankine-Hugoniot relations. Heat conduction, however, 
keeps the wall at  the constant temperature T:. After t" 2 4yf/PrRafo7,, the re- 
flected shock front has traversed the thermal layer; consequently we assume that 
there is no Rankine-Hugoniot jump in the thermal-boundary-layer region. This 
allows us to determine the matching conditions by representing the adiabatic- 
wall solution in thermal-layer co-ordinates (2, $) without worrying about the 
discontinuous behaviour off& - t )  and f 2 (  - x - t ) .  As in the fully dispersed case, 
ifie governing equation is (4.3), but withti( -8) replaced byjL( -$). Here, how- 
ever, we have an initial-value problem with 

and 

These initial conditions conform with our assumption that, a t  $ = 0, the re- 
flected shock front has already reached some B B 1, and has a uniform tempera- 
ture field behind it. Satisfying these conditions, we again conclude that c(B)  = 0, 
and find 

Similar expressions for density and temperature apply, 

4.2. Thermal-boundary-layer effects on the interaction region 

As B-+ -00, the asymptotic values of O,(B,t") and 8,(2,t") in (4.4) and (4.6), 
respectively, tend to zero exponentially. Hence, as B + -00, for the fully and 
partly dispersed cases, -+ 2(yf- l)fl,2( - f )  and p (̂l) -+ 2f1,,( - f ) ,  which shows 
there is no effect on the temperature and density in the interaction region. How- 
ever, the asymptotic value of thermal-layer velocity shows there are second- 
order effects. Writing (4.5) and (4.7) in co-ordinates (x, t )  we find that, as B +- a, 

23 

2 W )  --f 2f$,( -t)x+2Ul,2(t) ,  
F L M  65 
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where, for the fully and partly dispersed cases, 
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and 

Thus, a velocity of O(2) is induced by heat conduction to the wall; and the inter- 
action and thermal-layer expansions can only be matched if the interaction ex- 
pansion takes the form 

u(x ,  t )  = u(’)(x, t )  + eu@)(x, t )  + tu(”(x, t )  + 0 ( € 2 , 2 ,  € 2 ) .  (4.8) 
Here u(1) and u(2) have been found in $3,  and d 3 )  is the contribution from end-wall 
heat conduction to be determined by a matching with the thermal-layer results. 
This is equivalent to a new wall boundary condition for velocity determined by 
U1,Jt). (Here we take 2 9 e2; if 2 5 e2, the induced velocity is O(e2) and its in- 
fluence negligible.) Substitution of (4.8) and similar expansions for other gas 
properties into the governing equations yields 

For the fully dispersed case, the solution satisfying the condition that, as 

zP)(x, t + - CO) --f 0 

x --f 0, u(3) --f Ul(t) and the condition that, as t + - 00 with x - t fixed, 

is of the form 

This result shows that only a left-going wave is generated by the existence of the 
thermal boundary layer; the reflexion of this second-order wave from the ‘shock 
front ’ is of higher order, and no right-going wave appears. The generated wave 
has the same ‘shape’ as the wall velocity Ul(t). Similarly, we find that, for the 
partly dispersed case, the solution is u(3) = 0 for x + t < 0 and 

u(3)(x, t )  = U1(x + t ) .  (4.9) 

u(3)(x,t) = U2(x+t)  for x+t  2 0. (4.10) 

The velocities a t  x = 0 are not equal to zero; the new boundary values 

t^tc(3)(0, t )  = eu1,,(t) 
are ‘effective wall velocities’. This corresponds t o  a flux of gas from the inter- 
action region toward the end wall as a result of the hot gas adjacent to the wall 
being cooled by it. Integrating Ul(t) or Uz(t) gives the ‘effective wall displace- 
ments ’ 

a,nd 

Figures 4 and 5 show the ‘effective wall velocities and displacements ’ as func- 
tions of time, and delineate their asymptotic behaviour. 
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FIGURE 4. Effective wall velocity and displacement for fully dispersed shock 
(Pr = 0.75, K = 1.0). 
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t 

FIGURE 5 .  Effective wall velocity and displacement of partly dispersed shock 
(PT = 0.75, K = 0.5). 

4.3. Thermal-layer effects on the reJEected shock 

We now turn to the problem of determining the effect of the thermal layer on 
the reflected shock after it has travelled many relaxation lengths. The new 
matching condition for the outer solution is that, as i + 0, 

(4.11) 

23-2 
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I n  Q 3 we noted that, in both the fully and partly dispersed cases, the first-order 
terms of (4.11) lead to a steady-state solution. Here we determine the influence 
of the term which accounts for end-wall heat conduction .tUl,,(v) on the reflected 
shock trajectory. This requires the solution of (3.7) subject to the initial condition 
that, as f+ 0+, 

Ti--+ 1 - f 1 , + + ( y f + K )  f )+2UI, , (7) .  

Equation (3.7) cannot be solved analytically, Owing to the complexity of U1,2(v), 
the asymptotic behaviour of ii is also difficult to find and we resort to a simple 
numerical method. 

We introduce the co-ordinates 

r = 7 - ( & ( 5 - 3 y f ) + K ) f ,  f =  f 
U(r, f) = 1 -fl( - r )  + 8U(2)(r, f). and write 

I n  these co-ordinates and with ii@) as our basic unknown, the second-order 
equation (3.7) is rewritten for the fully dispersed case as 

subject to the initial condition DJ(r ,  0) = Ul(r), where 

Solving the first equation for Q(r,  t )  for given iP)(r ,  f) with &( - CO, f) = 0 at a 
given time i? = i0, then substituting the result into the second equation, we may 
determine 5(2)(r, f+ At).  For stability, an 'up-wind' differencing scheme is used. 
I n  our case, the term g,(r)aii(z)/& is written in forward differences and U(2)u:2) 
in backward differences. 

For the partly dispersed case, the basic numerical scheme is the same except 
that special techniques are required a t  the shock front. The speed of the shock 
front and the conditions right behind it are not known a priori. I n  this case, 
it is convenient to write the dependent variable for velocity in the form 

Z(r ,  f) = I - f2 (  - r + r,(f)) +2@)(r, f), (4.13) 

where r,(t) is an unknown function of time f to be computed by knowing the 
shock speed a t  any instant. The discontinuous jump is a t  r - r s ( f )  = 0, and 
the local shock speed is 

while the velocity right behind the shock front is Us = 1 - f,(O) + t ^ T i f ) ( f ) ,  where 
U:')(f) denotes the jump of the second-order term. The Rankine-Hugoniot rela- 
tions require 

(4.14) 
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FIGURE 6. Velocity profiles near an adiabatic wall. ---, locus of points 
where u = 0.5. ( E  = 0.01, K = 1.0.) 
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FIGURE 7. Reflected velocity profiles for partly dispersed wave (adiabatic wall). 
( E  = 0.01, K = 0.5.) 
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F I G U R E  8. Flow-field properties of a fully dispersed wave during the reflexion from 
an adiabatic wall ( E  = 0.01, K = 1.0). (Curves labelled with values of t . )  

which provides us with the relation for calculating r , ( f )  and then determining 
the shock position x,,,,~ for all times t * .  Substitution of (4.12) into (3.7) yields 
equations similar to (4.13). 

The grid points for the finite differences are designated such that the node 
points have equal spacing except in the first mesh, which is affected by shock 
position. At time f, we solve the analogue of the first of (4.12) for Q(r , f )  given 
d2)(r,  t )  with &(r = r,(f), f) evaluated from the analogue of the second of (4.12). 
We then substitute Q(Y, f) into the analogue of the first of (4.12) to compute 
iP)(r, t + A f ) .  Using (4.14) we calculate r , ( f + A f ) ,  then find ? P ( r  = rs(E+Af),  
t+ Ai)  by linear interpolation. 

- 
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FIGURE 10. Adiabatic end-wall temperature history ( E  = 0.01, yt = 1.4). 
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FIGURE 11. Comparison of the end-wall density history for adiabatic 
(-) and isothermal (- - - -) walls. 

5. Discussion and and conclusion 
The analytical results of our work are given in $$3 and 4. While they provide 

an understanding of the resulting phenomena, they are more easily interpreted 
after they have been evaluated numerically for some specific case. Unfortunately, 
we have not found appropriate experimental results for comparison; since weak 
shock waves have been studied in the absence of vibrational relaxation and 
moderate strength shock waves with vibrational relaxation examined, such 
experiments are possible. Increased interest in diverse vibrational relaxation 
times seems likely to lead to such experiments. The appropriate analytical 
results can be computed from the appropriate composite expansions given in $4. 
Here we illustrate some of these for an arbitrarily chosen weak shock strength. 
Flow fields are computed for both fully and partly dispersed shock waves 
corresponding to initial frozen Mach numbers smaller and greater than one. 
The Prandtl number is taken to be 0.75 and yf = 1.4; these values are appropri- 
ate for a vibrationally relaxing diatomic gas. 

Figure 6 shows the spatial variation of velocity for a fully dispersed shock 
wave constructed from the composite expansion for the adiabatic wall problem. 
These curves show the interaction between the shock wave and the end wall. 
The dashed lines represent the trajectory of the points where u = 4, which we 
may take to be the location of the shock. The shock wave comes from the left 
with non-dimensional speed 1 + (*(yf+ 1) - K ) E ,  is reduced to zero speed then 
reflected back with a speed that approaches 1 - ( t ( 5  - 3yf)  + K )  B. Near the wall 
the flow velocity must vanish, and the balance between convection and ‘relaxa- 
tion’ dispersion, which maintains the profile of a steady-state shock wave, cannot 
continue to hold. The first-order solution agrees with an acoustic approximation, 
behaving like the interaction of two weak waves with equal strengths but moving 
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in opposite directions. Convection and dispersion fail to balance to second order. 
For a partly dispersed wave, the wave consists of a Rankine-Hugoniot jump 
followed by a relaxation zone. Since a partly dispersed shock wave propagates 
faster than the frozen sound speed, there is no interaction with the wall before 
it reaches the wall. Figure 7 shows the velocity profiles of a partly dispersed 
shock wave after reflexion from an adiabatic wall. Figures 8 and 9 are plots of the 
variation in pressure, density and temperature, during reflexion from an adia- 
batic wall. The derivatives of these thermodynamic properties are always zero 
at the wall, and the properties always have extreme values there. Figure 10 
depicts the value of the time-varying adiabatic-end-wall temperature. 
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FIGURE 14. Variation of induced thermal velocity, fully dispersed shock 
(2 = 0.01, K = 1.0). 
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FIGURE 15. Variation of induced tlielmal velocity, partly dispersed shoclr 
( E  = 0.01, d = 0.02, K = 0.4). 

For an isothermal wall, there is a thermal layer with thickness O(B&7*) .  
The pressure is approximately constant through this thin thermal layer, while 
the gas is cooled and thus density increased. The pressure at Ghe isothermal end 
wall is the same as that a t  the adiabatic wall. Figure 11 shows the values of 
density at  adiabatic and isothermal walls as functions of time. The existence 
of the thermal boundary layer does not affect the incoming steady-state shock, 
but does affect the structure of the reflected shock to O(R&..). The 'negative' 
thermal layer attenuates the strength of the reflected shock wave. Figures 12 
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and 13 demonstrate the effect of this induced thermal velocity on the structure 
of the reflected shock wave. The influence of induced velocity is comparatively 
more profound, and exists longer, in the region far behind the wave front. Figures 
14 and 15 show the details of the time variation of the induced thermal velocity 
in the reflected far-field region. For large times, the effects of the thermal layer 
become weaker and the structure of the shock wave returns to the steady struc- 
ture, which represents a balance between nonlinear convection and relaxation 
dispersion. 
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